Regulated hydrogen peroxide production by Duox in human airway epithelial cells.
نویسندگان
چکیده
Hydrogen peroxide (H(2)O(2)) is found in exhaled breath and is produced by airway epithelia. In addition, H(2)O(2) is a necessary substrate for the airway lactoperoxidase (LPO) anti-infection system. To investigate the source of H(2)O(2) produced by airway epithelia, PCR was used to screen nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression in human airway epithelia redifferentiated at the air-liquid interface (ALI) and demonstrated the presence of Duox1 and 2. Western blots of culture extracts indicated strong expression of Duox, and immunohistochemistry of human tracheal sections localized the protein to the apical portion of epithelial cells. Apical H(2)O(2) production was stimulated by 100 microM ATP or 1 microM thapsigargin, but not 100 microM ADP. Diphenyleneiodonium, an NADPH oxidase inhibitor, and dimethylthiourea, a reactive oxygen species scavenger, both inhibited this stimulation. ATP did not stimulate the basolateral H(2)O(2) production by ALI cultures. ATP and thapsigargin increased intracellular Ca(2+) with kinetics similar to increasing H(2)O(2) production, and thus consistent with the expected Ca(2+) sensitivity of Duox. These data suggest that Duox is the major NADPH oxidase expressed in airway epithelia and therefore a contributor of H(2)O(2) production in the airway lumen. In addition, the data suggest that extracellular H(2)O(2) production may be regulated by stimuli that raise intracellular Ca(2+).
منابع مشابه
The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells.
The dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN(-)/LPO) system generates the microbicidal oxidant hypothiocyanite in the airway surface liquid by using LPO, thiocyanate, and Duox-derived hydrogen peroxide released from the apical surface of the airway epithelium. This system is effective against several microorganisms that infect airways of cystic fibrosis and other immunocompromised pat...
متن کاملHeterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells.
Duox NADPH oxidases generate hydrogen peroxide at the air-liquid interface of the respiratory tract and at apical membranes of thyroid follicular cells. Inactivating mutations of Duox2 have been linked to congenital hypothyroidism, and epigenetic silencing of Duox is frequently observed in lung cancer. To study Duox regulation by maturation factors in detail, its association with these factors,...
متن کاملRegulation of the C. elegans NADPH Oxidase
Reactive oxygen species are derived from oxygen and produced during microbial infections of mammals. NADPH oxidases, such as DUOX, catalyze the first step in ROS synthesis, forming superoxide and subsequently hydrogen peroxide. C. elegans expresses a DUOX enzyme encoded by the gene bli-3. It is believed that DUOX may be involved in host defenses in C. elegans against S. cerevisiae. Its activity...
متن کاملAll-trans retinoic acid mediates DUOX2 expression and function in respiratory tract epithelium.
DUOX1 and DUOX2 are members of the NADPH oxidase family that are specifically regulated to produce hydrogen peroxide in epithelia of the thyroid, gastrointestinal tract, and respiratory tract. The determinants of DUOX1 or DUOX2 expression in various tissues have not been established. Using respiratory tract epithelial cells as a model, we investigated changes in DUOX mRNA and protein expression...
متن کاملCigarette Smoke Impairs A2A Adenosine Receptor Mediated Wound Repair through Up-regulation of Duox-1 Expression
Cigarette smoke (CS) exposure and intrinsic factors such as the NADPH oxidases produce high levels of reactive oxygen species (ROS), ensuing inflammatory tissue injury. We previously demonstrated that CS-generated ROS, particularly hydrogen peroxide (H2O2), impaired adenosine stimulated wound repair. We hypothesized that CS exposure modulates expression of Dual oxidase 1 (Duox-1), a NADPH oxida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 32 5 شماره
صفحات -
تاریخ انتشار 2005